Chlamydial type III secretion system is encoded on ten operons preceded by sigma 70-like promoter elements.

نویسندگان

  • P Scott Hefty
  • Richard S Stephens
چکیده

Many gram-negative bacterial pathogens employ type III secretion systems for infectious processes. Chlamydiae are obligate intracellular bacteria that encode a conserved type III secretion system that is likely requisite for growth. Typically, genes encoding type III secretion systems are located in a single locus; however, for chlamydiae these genes are scattered throughout the genome. Little is known regarding the gene regulatory mechanisms for this essential virulence determinant. To facilitate identification of cis-acting transcriptional regulatory elements, the operon structure was determined. This analysis revealed 10 operons that contained 37 genes associated with the type III secretion system. Linkage within these operons suggests a role in type III secretion for each of these genes, including 13 genes encoding proteins with unknown function. The transcriptional start site for each operon was determined. In conjunction with promoter activity assays, this analysis revealed that the type III secretion system operons encode sigma(70)-like promoter elements. Transcriptional initiation by a sigma factor responsible for constitutive gene expression indicates that undefined activators or repressors regulate developmental stage-specific expression of chlamydial type III secretion system genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative sigma factor.

Biosynthesis of bacterial flagella involves the coordinated expression of 30 or more genes in several separate operons. We have recently shown that in Bacillus subtilis, the sigma 28 factor is essential for flagellar synthesis, suggesting that transcription of these genes is directly under the control of this alternative sigma factor. In enteric bacteria structural genes for flagellar, chemotax...

متن کامل

The role of the NAC protein in the nitrogen regulation of Klebsiella aerogenes.

The NAC (nitrogen assimilation control) protein from Klebsiella aerogenes is a LysR-like regulator for transcription of several operons involved in nitrogen metabolism, and couples the transcription of these sigma 70-dependent operons to regulation by the sigma 54-dependent NTR system. NAC activates expression of operons (e.g. histidine utilization, hut), allowing use of poor nitrogen sources, ...

متن کامل

The Chlamydial Type III Secretion Mechanism: Revealing Cracks in a Tough Nut

Present-day members of the Chlamydiaceae contain parasitic bacteria that have been co-evolving with their eukaryotic hosts over hundreds of millions of years. Likewise, a type III secretion system encoded within all genomes has been refined to complement the unique obligate intracellular niche colonized so successfully by Chlamydia spp. All this adaptation has occurred in the apparent absence o...

متن کامل

Regulation of type IV secretion apparatus genes during Ehrlichia chaffeensis intracellular development by a previously unidentified protein.

The type IV secretion (T4S) system is critical for the virulence of several pathogens. In the rickettsial pathogen Ehrlichia chaffeensis, the virBD genes are split into two operons, the virB3-virB6 (preceded by sodB) and virB8-virD4 operons. Between these two operons, there are duplications of virB4, virB8, and virB9. In this study we found that transcription of all five loci was downregulated ...

متن کامل

A novel transcriptional autoregulatory loop enhances expression of the Pantoea stewartii subsp. stewartii Hrp type III secretion system.

The hrp type III secretion regulon of Pantoea stewartii is regulated by a cascade involving the HrpX/HrpY two-component system, the HrpS enhancer-binding protein and the HrpL alternate sigma factor. hrpXY is both constitutive and autoregulated; HrpY controls hrpS; and HrpS activates hrpL. These regulatory genes are arranged in the order hrpL, hrpXY and hrpS and constitute three operons. This st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 1  شماره 

صفحات  -

تاریخ انتشار 2007